

Prozessmanagement-Summit 2010

SPICE for Systems (ISO 15504-6)

Das Assessment Modell für die Industrie

DI. Andreas Nehfort

andreas@nehfort.at

www.nehfort.at

DI. Andreas Nehfor

Agenda / Inhalte

- Vorstellung: Andreas Nehfort & Nehfort IT-Consulting
- SPICE / ISO 15504:
 - Die Prozessreifegrade
 - Das Prozess-Referenz- & Assessment Modelle
- SPICE 4 Systems ISO 15504-6 im Überblick
- Mögliche Anwendungsgebiete
- Assessment der Komponentenentwicklung
- SPICE 4 Systems & Safety Engineering (IEC 61508)
- Erfahrungen: in der Entwicklung elektronischer Geräte
- Resümee

SPICE for Systems / ISO 15504-6 - 2

Vorstellung Andreas Nehfort

IT-Consultant, Unternehmensberater, Trainer - seit 1986 selbständig:

- Software Prozesse → Assessment Based Process Improvement:
 - Software Engineering: CMMI & SPiCE
 - IT Service Management & Information Security Management
- IT-Projektmanagement, Qualitätsmanagement, Requirements

Qualifikation & Funktionen:

- SPICE Principal Assessor (iNTACS) & GPard Lead Assessor
- Itsmf certified ISO 20000 Consultant,
- Vorstandsmitglied im STEV-Österreich → www.softwarequalitaet.at

Background:

- TU-Wien Studium der Technischen Mathematik: 1975 1979
- Software Entwicklung seit 1978 und Projektleitung seit 1982

SPICE for Systems / ISO 15504-6 - 3

DI. Andreas Nehfor

Die Nehfort IT-Consulting

Beratungsunternehmen mit folgenden Schwerpunkten:

- Software Prozesse & Software Prozessverbesserung
- Vor dem Hintergrund anerkannter Referenzmodelle:
 - SPiCE ISO15504 / Automotive SPiCE / CMMI
 - ITIL / ISO 20000 bzw. ISO 27000ff
 - Agile Prozesse (SCRUM, ...)
- GP-Partner
- Network selbständiger Berater, Trainer, Assessoren:
 - Software Engineering & Projektmanagement
 - IT Service Management & IT Security Management

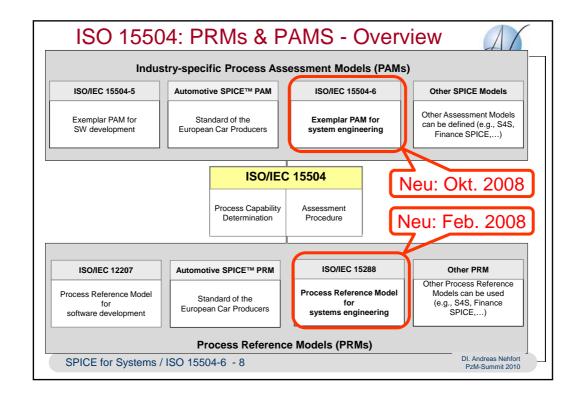
Nehfort IT-Consulting vertritt KUGLER MAAG CIE in Österreich!

SPICE for Systems / ISO 15504-6 - 4

Die Entwicklung der	A	
Prozessreifegradmodelle		
- SW-CMM 1.0	1990	
- Bootstrap	1992	
- SW-CMM 1.1	1993	
- SE-CMM 1.1	1995	
- ISO/TR 15504 / SPICE	1998	
- CMMI 1.1	2001	
- ISO 15504 / SPICE	2003 – 2006	
- CMMI 1.2	August 2006	
- Automotive SPICE	2006 / 2007	
- SPICE for Systems (ISO 15504-6)	Oktober 2008	
SPICE for Systems / ISO 15504-6 - 5	DI. Andreas Nehfort PzM-Summit 2010	

ISO 15504 / SPiCE




ISO/IEC 15504: Information Technology – Process Assessment

- ISO/IEC 15504-1: Part 1: Concepts and Vocabulary
- ISO/IEC 15504-2: Part 2: Performing an Assessment
- ISO/IEC 15504-3: Part 3: Guidance on Performing an Assessment
- <u>ISO/IEC 15504-4: Part 4:</u> Guidance on use for process improvement and process capability determination
- ISO/IEC 15504-5: Part 5: An exemplar process assessment model
- ISO/IEC TR 15504-6: Part 6: Exemplar Systems Life Cycle Processes
 Assessment Model
- ISO/IEC 15504 Part 7: Assessment of Organisational Maturity
- ISO/IEC 15504 Part 8: An exemplar process assessment model for IT service management (based on ISO 20000)
- ISO/IEC 15504 Part 9: Capability Target Profiles

rot: normativ blau: informativ grün: "under development"

SPICE for Systems / ISO 15504-6 - 6

Warum SPICE?

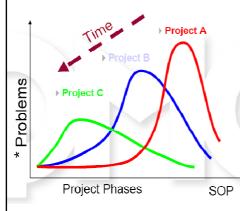
Die Prozessreferenzmodelle definieren inhaltliche Anforderungen an unsere Prozesse

Die offene Frage:

- Wie müssen sichere/zuverlässige Prozesse beschaffen sein?

Das **Prozessreifegradmodell** gibt eine Antwort:

- Prozessreife bieten eine methodische Grundlage für Prozess-Sicherheit/Zuverlässigkeit!
- Mit **zunehmender** Prozessfähigkeit werden die Ergebnisse des Prozesses besser vorhersagbar!


SPICE / ISO 15504 ist enabler für sichere/zuverlässige Prozesse - und damit für die Wirksamkeit der Prozesse.

SPICE for Systems / ISO 15504-6 - 9

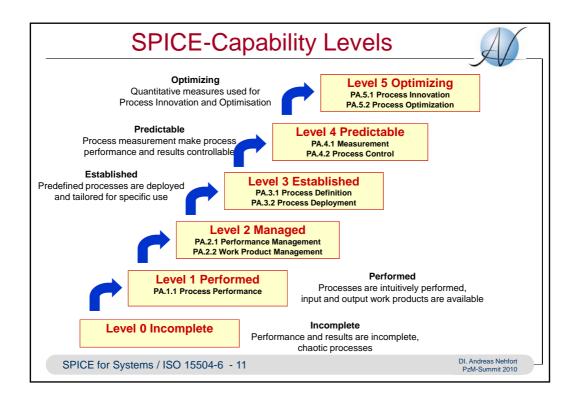
Prozessverbesserung

muss sich rentieren!

Prevention instead of Reaction

SPICE for Systems / ISO 15504-6 - 10

Die Erwartung des VDA hinsichtlich **Automotive SPICE:**


Zunehmender Prozessreife bewirkt:

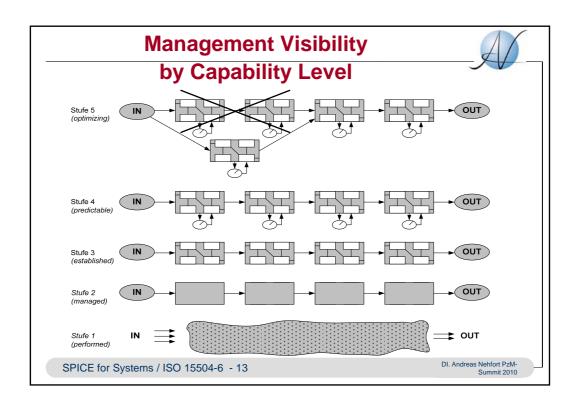
- Weniger Probleme
- Diese werden früher entdeckt Projekt A → Projekt B → Projekt C

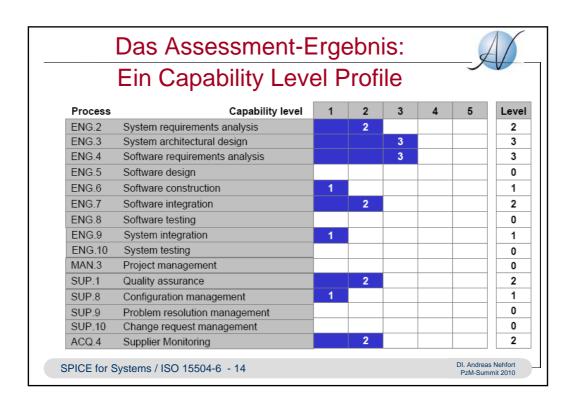
Wirtschaftlichkeitsbetrachtung:

- Reduzierung der Fehlerkosten
- Reduzierung des Risikos
- Reduzierung der Time-To-Marke

Das rechtfertigt die Investition in SPICE basiertes Prozess-Management

SPICE als Best Practice für




Prozessmanagement

Das SPICE Prozessreifegradmodell liefert einen generischen Baukasten für reife Prozesse:

- Geeignete Basispraktiken, damit der Prozess seinen Zweck erfüllen kann.
- Planung & Lenkung der Prozessdurchführung → CL2
- Planung & Lenkung der Prozessergebnisse → CL2
- Kriterien für die Definition von Standardprozessen → CL3
 - Inklusive Überwachung auf Eignung & Angemessenheit
- Kriterien für den Einsatz von Standardprozessen → CL3
 - Inklusive Analyse des Prozessverhaltens
- Kriterien für quantitative Prozessteuerung → CL4

SPICE for Systems / ISO 15504-6 - 12

Die Vorgeschichte der ISO 15504-6

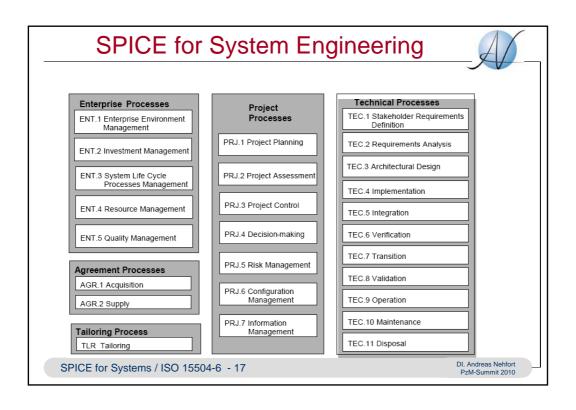
	to good morne do not not not not not not not not not no	
1995	ISO/ IEC 12207 first edition	
1995	SPICE Documents (Working Draft)	
1998	Technical Report ISO/IEC TR 15504	
2002	ISO/IEC 12207 AMD1 (PRM conformant to ISO/IEC 15504-2)	
2002	First edition of ISO/IEC 15288	
2004	ISO/IEC 12207 AMD2 (PRM - corrected AMD1)	
2003 – 2006	ISO IS 15504 Part 1 – Part 5	
2005	Automotive SPICE™ (update each year)	
2008	ISO/IEC 15288:2008 (harmonizes with ISO/IEC 12207)	
2008	ISO/ IEC 12207:2008 (aligned with new ISO/IEC15288:2008)	
2008	ISO/IEC TR 15504-6 SPICE for Systems	

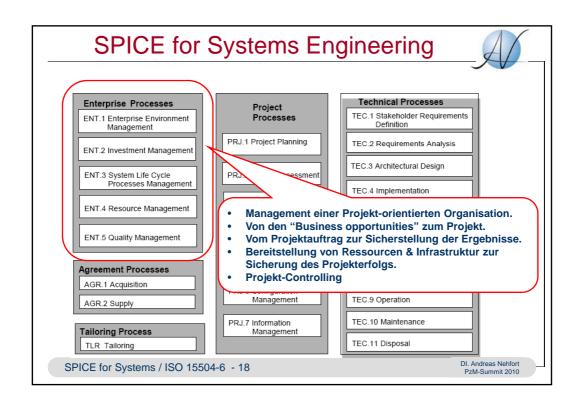
SPICE for Systems / ISO 15504-6 - 15

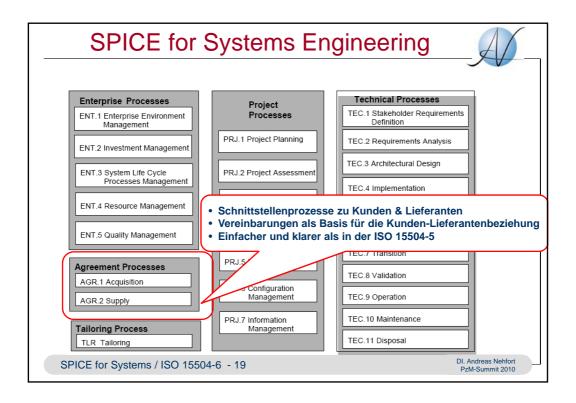
DI. Andreas Nehfor PzM-Summit 2010

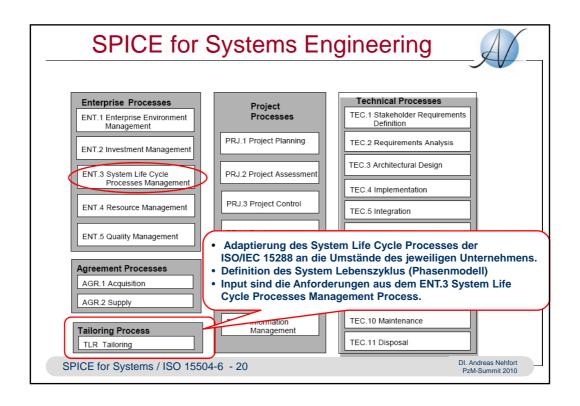
ISO 15288:2008 - Scope

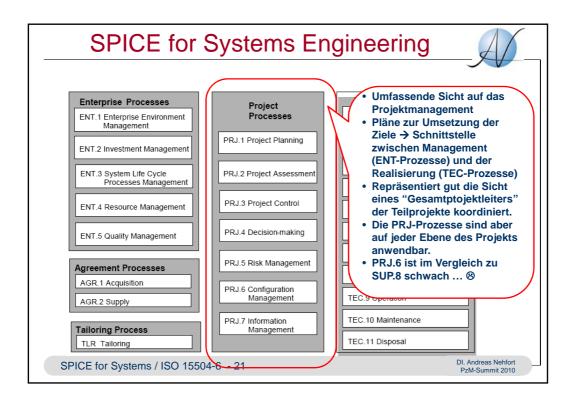
ISO 15288:2008: Abstract

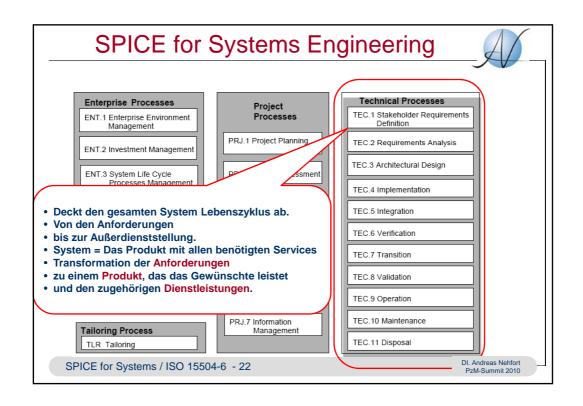

"This International Standard establishes a common process framework for describing the life cycle of man-made systems.


This International Standard applies to the <u>full life cycle</u> <u>of systems</u>, including


- conception,
- development,
- production,
- utilization,
- support and retirement of systems,


and to the acquisition and supply of systems.


SPICE for Systems / ISO 15504-6 - 16



SPICE for Systems Anwendungsgebiete (1)

- Die Entwicklung von Geräten, Maschinen und Anlagen.
 - "SPICE for Systems" ergänzt die Richtlinien für die Maschinensicherheit
- Projekte im Anlagenbau (incl. "product-related services")
 - "SPICE for Systems, bietet einen kompletten System Lebenszyklus
- Die Entwicklung von "embedded systems" oder "Software-intensiven System"
 - In Verbindung mit ISO 15504-5 f
 ür Software Engineerig
- Große IT-Infrastrukturprojekte (die von ITIL nicht adäquat abgedeckt werden)

SPICE for Systems / ISO 15504-6 - 23

DI. Andreas Nehfor

SPICE for Systems

Anwendungsgebiete (2)

- Die Entwicklung von Komponenten für einen OEM.
 - z.B. Automotive, Railway, Anlagenbau, ...
- Die Entwicklung von Systemen in Zusammenarbeit mit Sub-Lieferanten
 - SPICE for Systems ergänzt Automotive SPICE sehr gut!
 - From an Automotive SPICE perspective you can say:
 - → System: "Thats the rest of the car"
- Die Entwicklung von Sicherheitsbezogenen Systemen
 - "SPICE for Systems" passt gut zur IEC 61508!
 - "SPICE for Systems" unterstützt den Safety Lifecycle!

SPICE for Systems / ISO 15504-6 - 24

Der Stand der Anwendung

- SPICE 4 Systems hat noch eine geringe Verbreitung
 - Es fehlt eine geeignete Lobby.
- Es ist noch nicht klar, wie die Automotive Community SPICE 4 Systems aufnehmen wird.
 - Es gibt (noch) keine konkreten Pläne zur Nutzung von ISO 15504-6 in der Automobilindustrie.
 - Der Einsatz von SPICE 4 Systems wäre naheliegend
 → System: "Thats the rest of the car"

Für alle Hersteller von Mechanischen oder Elektronischen Geräten & Systemen ist die ISO 15504-6 eine Überlegung wert → Prozessreife schafft Sicherheit!

SPICE for Systems / ISO 15504-6 - 25

DI. Andreas Nehfor PzM-Summit 2010

Der System Lifecycle

Der System Lifecycle:

- TEC.1 bis TEC.6 betrifft die Entwicklung des Systems
 - Von den Business Requirements bis zur Produktfreigabe
- TEC.7 & TEC.8 betrifft die Inbetriebnahme und Betriebsfreigabe des Systems
- TEC.9 & TEC.10 betrifft Betrieb & Wartung des Systems
- TEC.11 betrifft die Außerdienststellung (den Abbau)

Wo finden wir die Entwicklung der Komponenten?

- TEC.4.BP.3: Realize system elements

SPICE for Systems / ISO 15504-6 - 26

TEC.4 Implementation Process Technical Processes TEC.1 Stakeholder Requirements Definition Basipraktiken: TEC.2 Requirements Analysis - TEC.4.BP.1: Define implementation strategy TEC.3 Architectural Design - TEC.4.BP.2: Identify implementation constraints on design **TEC.4 Implementation** - TEC.4.BP.3: Realize system elements TEC.5 Integration - TEC.4.BP.4: Record system element TEC.6 Verification conformance information - TEC.4.BP.5: Contain system elements TEC.7 Transition Resumee: TEC.8 Validation - Sehr abstrakt - sehr an der Oberfläche TEC.9 Operation - Tiefgang nicht vergleichbar mit der SW-Entwicklung TEC.10 Maintenance - Aussagekraft ??? ... 8 ... TEC.11 Disposal

Ein Problem: Assessment der Komponentenentwicklung

Unsere Lösung

Erweiterung der ISO 15504-6 "Generic PAM for Component Development"

Adaptierung von ENG.4 bis ENG.8 für die Komponenten-Entwicklung

DI. Andreas Nehfort PzM-Summit 2010

SPICE for Systems / ISO 15504-6 - 27

Typischer Aufbau eines Geräts oder einer Anlage

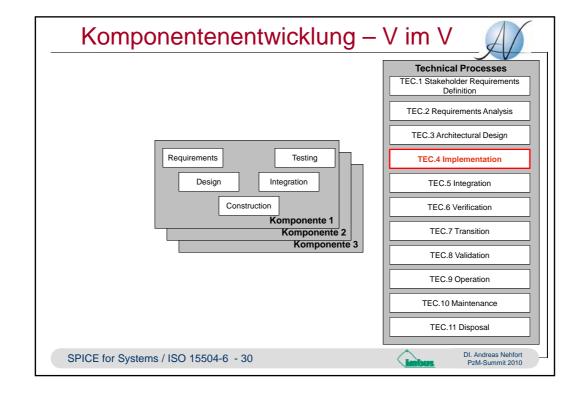
Mechanische Komponenten:

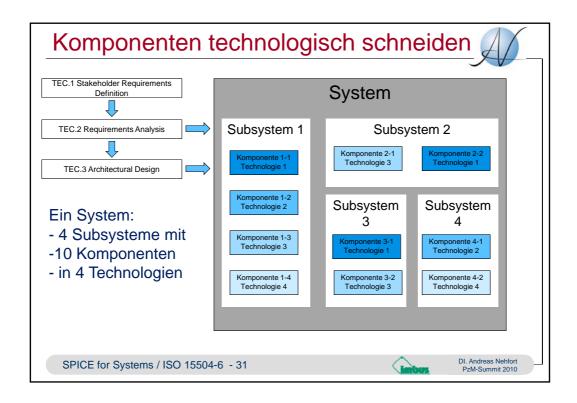
- Rahmen/Rack, Gehäuse,

Elektrische Komponenten:

- Stromversorgung, Motoren, ...

Elektronische Komponenten:


- Leistungselektronik, Steuerelektronik,

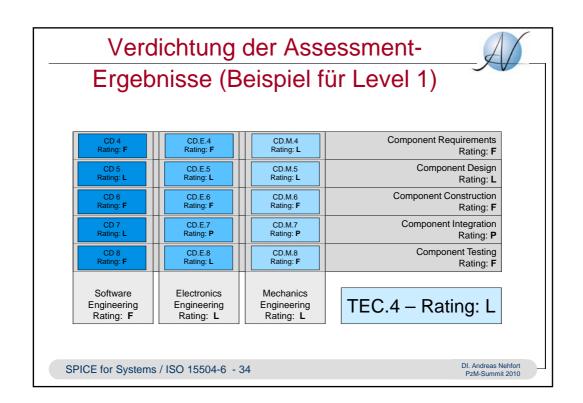

Komponenten in spezifischen Technologien, z.B.:

- Hydraulik, Optik,
- Lüftung: Elektromotoren, Lüfter → Aerodynamik & Akustik ...

SPICE for Systems / ISO 15504-6 - 29

 Andreas Nehfor PzM-Summit 2010

DI. Andreas Nehfort PzM-Summit 2010


SPICE for Systems / ISO 15504-6 - 32

Assessment in der Geräteentwicklung TEC.4 Implementation Process

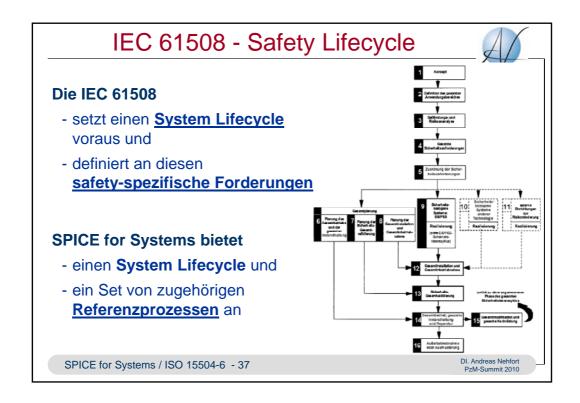
Software Engineering	Electronics Engineering	Mechanics Engineering
ENG.4 Software	CD.E.4 Electronics	CD.M.4 Mechanics
Requirements Analysis	Requirements Analysis	Requirements Analysis
ENG.5	CD.E.5	CD.M.5
Software Design	Electronics Design	Mechanics Design
ENG.6	CD.E.6	CD.M.6
Software Construction	Electronics Construction	Mechanics Construction
ENG.7	CD.E.7	CD.M.7
Software Integration	Electronics Integration	Mechanics Integration
ENG.8	CD.E.8	CD.M.8
Software Testing	Electronics Testing	Mechanics Testing

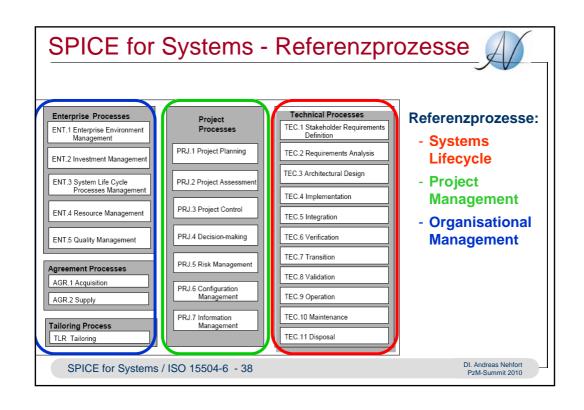
SPICE for Systems / ISO 15504-6 - 33

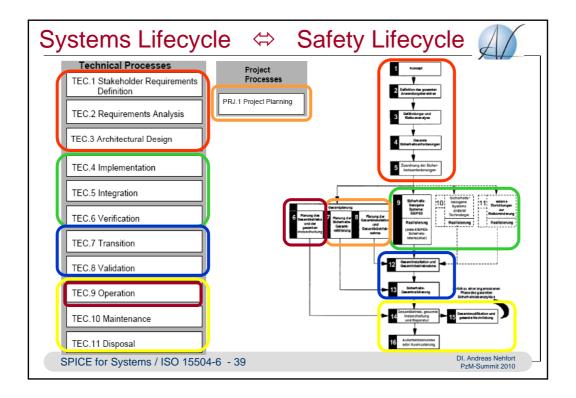
Unsere Erfahrungen damit

Das "PAM for Component Development" hat sich bewährt!

- Assessment der Geräte-Entwicklung mit den TEC-Prozessen
- Assessment der <u>Komponentenentwicklung</u> mit den CDEV-Prozessen:
 - Entwicklung des Geräterahmens und Gehäuses
 - Entwicklung der Elektronik-Platinen (analog/digital)
 - Entwicklung der Signalverarbeitung FPGA-Programmierung
 - Entwicklung der Gerätesteuerung SW-Entwicklung
- Der generische Ansatz
 - forciert eine ähnlich strukturierte Vorgehensweise.
 - fördert die Identifikation von konzeptuellen Gemeinsamkeiten und technologiebedingten Unterschieden.


SPICE for Systems / ISO 15504-6 - 35


DI. Andreas Nehfort PzM-Summit 2010



SPICE 4 Systems & Safety Engineering (IEC 61508)

Wie kann SPICE 4 Systems die Entwicklung sicherheitsbezogener Systeme unterstützen?

Resümee ad Safety Engineering

- SPICE for Systems (ISO 15504-6) ist eine sehr gute Grundlage für die Implementierung des Safety Lifecycles
- SPICE for Software (ISO 15504-5) ist eine gute Grundlage für die Implementierung Forderungen aus IEC 61508-3
- Das SPICE Reifegradmodell unterstützt die Prinzipien der IEC 61508
 - hinsichtlich Planung & Management
 - hinsichtlich definierten Prozessen & Verfahren
 - hinsichtlich Nachvollziehbarkeit
- Höhere Prozessreife reduziert das Risiko unerwünschter Prozesergebnisse → mehr Sicherheit ...

SPICE for Systems / ISO 15504-6 - 40

Mögliche Anwendungsgebiete

EN 62061: Sicherheit von Maschinen — Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme

<u>ISO 13849:</u> Safety of Machinery: Safety-related parts of control systems

ISO CD 26262: Road vehicles -- Functional safety

<u>IEC 61511:</u> Funktionale Sicherheit — Sicherheitstechnische Systeme für die Prozessindustrie

EN 50129: Bahnanwendungen — Telekommunikationstechnik, Signaltechnik und Datenverarbeitungssysteme - Sicherheitsrelevante elektronische Systeme für Signaltechnik

SPICE for Systems / ISO 15504-6 - 41

DI. Andreas Nehfor

Unsere Erfahrungen mit SPICE 4 Systems

Unsere Erfahrungen sind ausgesprochen positiv:

- Die Assessments haben
 - die Stärken & Schwächen der Elektronikentwicklung klar aufgezeigt und
 - wertvolle Hinweise für die Prozessverbesserung geliefert.
- Hohe Akzeptanz bei den Betroffenen → rasche Reaktion
- ISO 15504-5 (SW-E) & Teil 6 (SY-E) ergänzen einander recht gut und können sehr gut kombiniert werden.
- Das "Generic PAM for Component Development" hat sich bewährt!

SPICE for Systems / ISO 15504-6 - 42

Assessments in der Elektronik Entwicklung

Verblüffende Parallelen zur Software Entwicklung ...

- Ähnlicher Status wie nach dem ersten Assessment in der SW-EW
- Ein ähnliches Prozess-Reifegradprofil
- Ganz ähnliche Probleme

Der große Unterschied:

- Die Entwicklung hat heute andere Ansprüche an die Prozessreife,
- hat gelernt "SPICE best practice" in ihre Prozesse zu integrieren

Das Ergebnis:

Eine rasche Reaktion → Prozesse für die Elektronik-Entwicklung

SPICE for Systems / ISO 15504-6 - 43

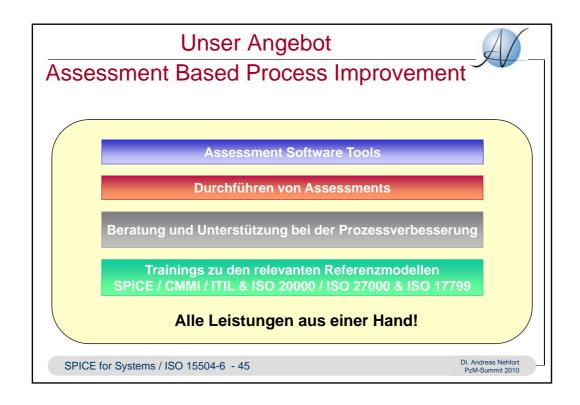
DI. Andreas Nehfor PzM-Summit 2010

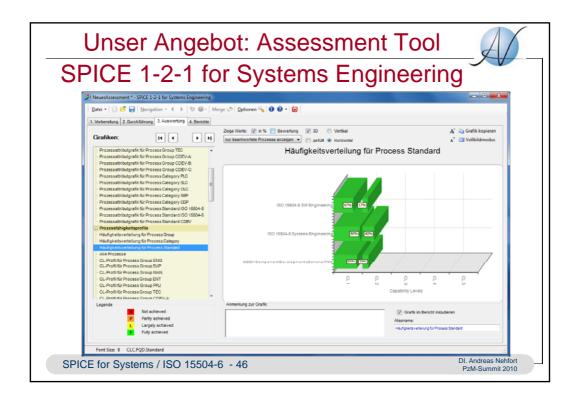
Statement des Kunden nach 4 Jahren Process Improvement mit SPICE

Definiere die Prozesse auf der Basis von "best practices"!

- Prozesses müssen gemanaged werden, nicht bloß definiert ...
- Proaktiv handeln! Nicht nur (auf Probleme) reagieren!
- Der Spielraum für Tayloring muss mit den Risiken austariert werden

Definiere "work products" pro Prozesschritt!


- Standards Templates & "Definitions of **Done**" sparen Zeit und Geld!
- Systematische "peer reviews" reduzieren die Fehler und helfen gegen Personalausfall


Alle Projekte arbeiten nach dem selben Prozess!

- Das befähigt die Teams von einander zu lernen
- Prozesse müssen wirklich gelebt werden → Eine Frage der Leadership!

Prozessverbesserung ist ein Ziel für jeden Mitarbeiter!

SPICE for Systems / ISO 15504-6 - 44

Die Funktion des Beraters

- Einbringen von Methode und Prozess-Know-How
- Durchführung der initial Assessments (oder Assessment-Guide für die Self-Assessments)
- Beratung bei der Improvement-Planung
- Beratung und Unterstützung bei der Umsetzung der Massnahmen:
 - Gestaltung der Prozesse und Hilfsmittel (Tools)
 - Beschreibung der Prozesse, Implementierung der Tools
- Begleitung/Coaching beim Piloteinsatz
- Unterstützung bei der Fortschritts- & Erfolgskontrolle.
- Begleitende Qualitätssicherung im SPI-Projekt.

SPICE for Systems / ISO 15504-6 - 47

DI. Andreas Nehfort PzM-Summit 2010

Danke für Ihre Aufmerksamkeit!

Fragen & Anmerkungen
Diskussion ...