CONQUEST 2006

Planning Software Development

TAKEN AS A MANUFACTURING CONTROL PROBLEM

BERLIN 29.09.2006

DI. Andreas Nehfort

Abstract

“All models are wrong, but some are useful!”

Project planning and management is the commonly preferred approach (model) for planning and controlling
software development. In this paper | want to point out that the project approach is not always useful for plan-
ning software development! In many cases the management of software development has more in common with
managing a flexible small lot production than with a project.

Consequently, in those cases the project paradigm makes planning and especially re-planning unnecessarily
complicated, tricky and cumbersome. A paradigm shift (from project management to manufacturing control)
will replace the project task as primary planning variable by the resources. This can reduce your planning
complexity and increase your planning success dramatically.

Agile planning approaches work with this paradigm shift. This paper will also illustrate how and especially
why agile planning works.

1. MOTIVATION

During my consulting work | have dealt with lots of IT-projects. In the past five years many IT companies have in-
vested a lot of money to improve their project management skills.

In spite of this, more and more projects fail in the management of change. Project managers struggle with an in-
creasing number of minor or major changes. These projects are characterised by time-consuming Jour-Fixe meetings
and frequent pre-planning with slipping schedules and due dates, which results in unreliable plans.

Some of these projects called me to bail them out. Based on my consulting work, | have established a set of tech-
niques and rules to handle a high rate of change requests. Reflecting my work | realised that these techniques sounded
familiar to me. They reminded me of my work running a manufacturing control station for assembling printed circuit
boards years ago. These similarities were not accidental - from my point of view many of these software development
“projects” had more in common with managing a flexible small lot production than with a project.

Today, more and more IT projects are of this kind. Requirements often have become moving targets. Consequently,
in these cases a paradigm shift (from project planning to manufacturing control) can reduce their planning complexity
dramatically. Applying manufacturing control techniques and some simple rules can help them take control over their
problems quickly.

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstralke 17/20 1/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 13:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem
Berlin 29.09.2006

2. THE PROBLEM - ILLUSTRATED WITH AN IMAGINARY PROJECT

Note: similarities to real world software development are intended — not accidental!

2.1 The starting point

UsefulSoftware Inc. is developing Rel. 3.1 of their leading product UseMe. During the planning phase in January the
product manager and the manager of the SW-development department have agreed to implement 10 new features.
Initially the product manager had at least 12 to 14 new features in mind, however he had to accept that with the avail-
able team
(8 software engineers) they would implement “only” 10 features if he wanted Rel. 3.1 to be finished until the end of
September to be able to present Rel. 3.1 at the large exhibition early in October.

2.2 The project evolves

The implementation of the 10 features was planned — the plan was ambitious but not impossible. At this point the
change (hi)story began:

« Feb. 15" An urgent bug fix (and patch) for Rel. 3.0 is required. The analysis shows that the problem is tricky and
the solution costly.

« March 2" Mrs. Meyer — who is leading the UseMe implementation project at TheBigOilCompany — needs a new
feature until April 10" to fulfil the contract.

« March 20™: The product management has a change request: a new feature is required for Rel. 3.1 to respond to a
competitor’s product announcement (therefore feature 3 could be postponed - if absolutely necessary)

« In April the developers find out that feature 6 cannot be implemented as planned (further investigations are re-
quired to find an adequate solution).

e And so on ... each month one or two additional major requests and lots of minor ones, all of which have been
handled by change management ...

2.3 The result

At the end of September the development team has implemented
« 4 of the initially 10 planned new features
« plus 2 features proposed by the product manager during development.
« plus 3 features needed by customer implementation projects
« plus 2 patches for Rel. 3.0: the urgent patch from March and a “service pack” solving different problems in July

The output is 11 features/patches instead of 10. But only 4 of them reflect the initial plan for Rel. 3.1. The overall per-
formance seems not too bad, but the result does not satisfy — nobody is happy with Rel. 3.1. The cost overrun amounts
to approximately 25%.

The project from the perspective of the development team

The development team has been under pressure from Feb. 15" to Sep. 30™; working overtime was a matter of course;
60 working hours per week were no exception.

In weekly status meetings, most of the time was spent on telling each other WHAT has NOT been done, and WHY
it could not be done - despite the plans and agreements. The rest of the time was spent on trouble-shooting to handle
new requests (tasks) and new priorities.

Nehfort IT-Consulting KEG
A - 1030 Wien Untere WeiRgerberstralRe 17/20 2/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem
Berlin 29.09.2006

The plans have been (r)evolved frequently; many decisions had to be delegated to the change control board. It was
frustrating that most features and tasks were not according to plan.

The project from the perspective of the management

The product manager and the head of the UseMe business division were not satisfied with the poor development per-
formance: Only 4 of the 10 initially planned features had been implemented (let me remind you that the product man-
agement wanted 12 to 14 new features — and 10 was a compromise ...). Unfortunately, the announcement of all the 10
features has started in February (the customers at the large exhibition in October asked for the missing features ...
those were hard days for the marketing team).

The 4 features needed by customer implementation projects and the 2 patches are not worth mentioning because
these were daily work requirements we simply had to deliver - if we were not able to manage them we could as well
close the company and go home!

The release 3.1 from the customer’s perspective

Most of the customers were disappointed about UseMe Rel.3.1. Many Users of Rel. 3.0 or Rel. 2.x waited for some of
the features which had been announced but were not implemented in Rel. 3.1. They had planned to upgrade to Rel. 3.1
in the last quarter of the year. They felt insecure, because this was not the first time the product did not comply with the
announcement.

2.4 Your opinion of our imaginary project?
What do you think about this imaginary project?
« Does this story sound totally strange to you - overstated and crazy?
Or do you see similarities to real world software development projects in your surroundings?

< Have you ever heard about such a project?
« Does the story sound familiar to you?
« Have you even worked in such a project?

3. THE ANALYSIS

From my point of view our imaginary project does not have much in common with what we call a “project”! - What is
a project? The “PMI - Project Management Body of Knowledge” — PMBOK [1] defines “project” as follows:
“A project is a temporary endeavor undertaken to create a unique product or service.” “Temporary means that
every project has a definite beginning & a definite end.”” “The end is reached when the project objectives have been
achieved, or ... the project is terminated.” ... “Unigue means that the product or service is different in some distin-
guishing way from all other products or services.”
“For many organizations projects are a means to respond to those requests that cannot be addressed within the or-
ganization’s normal operational limits.”ppmpok 2000

Is our endeavor temporary? Does it have a definite end?

« With respect to the release date (End of September) it has a definite end!
« With respect to the “project objectives” (= initially planned feature list) it has not!

Does our endeavour create a unique product? Does it have a “project objective” in the PMBOK’s sense? Let’s have a
look at what the PMBOK says about the “project objective”:

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstrale 17/20 3/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem
Berlin 29.09.2006

“The objectives of projects and operations are fundamentally different. The objective of a project is to attain the
objective and close the project. The objective of an ongoing nonprojectized operation is normally to sustain the
business. Projects are fundamentally different because the project ceases when its declared objectives have been at-
tained, while nonproject undertakings adopt a new set of objectives and continue to work.”

I think that makes it clear: The development of Rel. 3.1 is no typical project work!
It has the characteristics of an “ongoing nonprojectized operation”:

« The main objective of our endeavour called “project” was to produce a new release until the end of September.
The “project objectives” regarding the content (the set of features) was highly unstable: Initially, there were 12-
14 features, then 10 features defined as project scope, and in the end we had 4 of the initially planned features and
some others which had arisen during development.

e What is our project team going to do at the end of September? Close the project?
No - they will tackle the next set of features to implement Rel. 3.2 — which means they will “adopt a new set of
objectives and continue to work”.

These are the characteristics of non-project work! The main tasks are

« Implementing features
« Bundling features to a product release

Software development under such circumstances may be regarded as a manufacturing problem:

« Asingle feature or request can be taken as production order
 The set of features can be taken as order backlog

Agile development works with such metaphors and provides adequate planning techniques. Mary Poppendieck [2] has
published “Assembly-line production techniques apply to software, too” in 2001 — see also [4] and [5].

Note: Contrary to the development of rel. 3.1 the UseMe implementation project at TheBigOilCompany is a project.
What will the project team do at the end of the project? They will close the project and start a another implementation
project with totally different stake holders, business goals, agreements, and so on ... the achievements for TheBigOil-
Company will not affect our new customer — each customer site implementation is a “unique product or service”.

4. DIFFERENT PLANNING APPROACHES TO PROJECTS AND
PRODUCTION

4.1 The project planning approach

Classic project planning is based on the project objectives and the corresponding project scope (product or service).
The problem / project-task represents the amount of work. For the first cut we treat the problem (amount of work) as
constant - it is considered as the independent planning variable. Then, we try to determine (estimate and plan) the
corresponding effort (resources) and time schedule needed to do the work
- resources and time are the dependent planning variables.

If the planning result is not satisfying, we have to adjust resources and time to meet the project objectives. If we
cannot meet the project objectives by adjusting resources and time, we have to reconcile work, effort and time — in that
sequence - to re-dimension the project until the plan seems to be feasible and satisfying.

If the project scope changes later on or relevant deviations from the plan become obvious, we have to re-plan the
project (= change management & re-planning).

If the project scope is a moving target - like in our imaginary project — re-planning based on the “amount of work” as
independent planning variable is a cumbersome task.

Nehfort IT-Consulting KEG
A - 1030 Wien Untere WeiRgerberstrale 17/20 4/11 —
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem
Berlin 29.09.2006

Note: In software projects relevant deviations of the estimated and the actual effort are quite common. This means
that even when the project scope is quite stable, the amount of work may be higher than estimated and may cause rele-
vant deviations from the plan.

In projects, the method to achieve a satisfying performance is to design and implement an appropriate project or-
ganization. If the project scope is a moving target, this method will be of limited effect. You cannot redesign your
project organization on a frequent basis, but you may try to establish a flexible project organization. However, for
more flexibility you typically have to put up with decreased productivity ...

4.2 The production planning approach

Production planning for a flexible small lot production is not based on the “production goal” or the order backlog — it is
based on the available resources. The amount of resources available per time period is considered as the independent
planning variable. In many cases we can treat the available resources as constant — at least for short-term planning.
What can we plan? We can allocate orders and the time to the available resources - these are the dependent planning
variables.

In the order backlog the production orders are prioritized with respect to the requested delivery date and classified
with respect to the resources they need.

Based on this priority and resources requirements, the production orders are dispatched to the available resources.

If the planning result is not satisfying, we have to reconcile priorities and resource allocation (dispatching), and if
that does not help, we have to arrange for a new delivery date.

Dispatching can be oriented on different optimization goals. Typical antagonists are:

« Optimizing throughput (maximum productivity)
« Optimizing throughput time (short-term delivery)

It is a matter of fact regarding production planning that you cannot optimize in both dimensions simultaneously without
making compromises. Another optimization strategy is:

« Optimizing from bottleneck resources

Optimizing througput

Optimizing throughput is focused on minimizing non-productive times (down-times, set-up times, re-tool-times) by an
appropriate sequence of production orders and an appropriate parts supply. Changing order sequence will typically lead
to increasing set-up-times and therefore reduced throughput. Hence, optimizing throughput means limited flexibility.
You will achieve the maximum throughput on a single product assembly line, which typically is very limited in flexi-
bility.

Optimizing throughput time

Optimizing throughput time is focused on minimizing the time between order and delivery (short-term delivery).
Minimizing throughput time implies short-term changing of priorities and production sequence. This requires flexible
workers and machinery, a just-in-time parts supply, workload with reserves for rush-orders and so on. It is obvious that
these measures will reduce throughput compared to the concepts above.

Optimizing from bottleneck resources

Many production planning problems result in bottleneck resources, which cannot be increased on a short-term basis.
Hence, the overall output is limited by the bottleneck. In this case, production planning usually starts with planning the
bottleneck resources to optimize their throughput, e.g. by minimizing their set-up-times. Then the rest of the work to

Nehfort IT-Consulting KEG
A - 1030 Wien Untere WeiRgerberstralRe 17/20 5/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem
Berlin 29.09.2006

achieve an optimized production order for the bottleneck resources is planned. This implies sub-optimal work-loads for
the non-bottleneck resources. The supply-chain before the bottleneck must be focused on causing no downtimes at the
bottleneck due to supply problems, and the assembly line behind the bottleneck typically does not work at full capacity.

4.3 The conclusions

Should the characteristics of your software development “project” look like a “production problem”, you can benefit
from treating it as a production planning problem.

Rephrasing the planning problem

Re-planning by changing the dependent planning variables is always simpler than re- planning by changing the inde-
pendent planning variables! All planning techniques focus on adjusting the dependent planning variables to achieve the
goal, with respect to the value of the independent planning variable. So the control loop is closer compared to adapting
the independent planning variable!

Once you have accepted that the resource (in man-days) is your most reliable planning parameter, it is just a small
step towards the execution of the paradigm shift: to replace the “project objectives” (=the work to be done) by the
“resources” as independent planning variable.

Focusing on the resources as independent planning parameter suddenly makes you realize that your planning prob-
lem is a different one:

* First (focusing on the “project objectives” = the work to be done):
How can we manage the (whole) project task due to limited resources and schedules? Often this problem turns
out to be an impossible task™.

« Afterwards (focusing on the resource limits as primary planning parameter):
How much of the required or desired results can we produce at which delivery date — and which features fit best
to achieve the project objectives.

Rephrasing the project order

If we want to focus on the resources as primary planning parameter, we have to say good-bye to our perception of a
project as a kind of contract in which the requirements are the subject matter, as all articles of a contract are of the
same importance. If you do not fulfill them all you break the contract.

Once you have agreed to this contract, the ordering party (client) consequently has no motivation to prioritize the
features or requirements. You have agreed to fulfill them all — typically for a fixed price or budget and a fixed sched-
ule. So why should they resign from single requirements? They must really have a good reason to do so!

Planning with a focus on the resource limits as primary planning parameter needs a prioritized list of features or re-
quirements allowing you to insert new items, to upgrade or downgrade the priority of items or to delete items.

The agile manifesto [7] reflects this need with the following values:

e “Customer collaboration over contract negotiation”
« “Responding to change over following a plan”

* Mostly we don’t call it “impossible task”, and we try hard to succeed — but in fact, often it is an impossible task — and
sometimes we know it from the beginning ...

Nehfort IT-Consulting KEG
A - 1030 Wien Untere WeiRgerberstrale 17/20 6/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem

Berlin 29.09.2006

5. RECOMMENDED RULES AND TECHNIQUES

The following rules focuson achieving 2 rewarding goals:

« Increasing planning reliability by planning a feasible workload, which takes into account the additional work-
load caused by short-term and ad-hoc requests.

« Increasing productivity by minimizing down-times due to interruptions caused by requests, which have to be
handled (analyzed, estimated, ...) and the succeeding re-planning. You may remember: “In weekly status meet-
ings most of the time was spent on telling each other WHAT has NOT been done, and WHY it could NOT be
done - despite the plans and agreements”. Too much resources have been blocked by request handling and trou-
ble shooting.

5.1 Resource partitioning due to different planning horizons
In our imaginary “project” we have 4 planning horizons:

« Long-term: future releases - coming after the release under development. In our imaginary project, the long-term
planning horizon is represented by all the features which have been postponed to Rel. 3.2 and higher. The long-
term planning horizon is typically about one year or longer.

« Mid-term: the features for the release under development at the beginning of the planning phase. In our imagi-
nary project, the mid-term planning horizon is represented by the 10 features planned in January for Rel. 3.1 (we
know — only 4 of them have been implemented in Rel. 3.1 ...) Typically, the mid-term planning horizon is about
9 to 12 months.

« Short-term: the features for the release under development which arise during development. In our imaginary
project, the short-term planning horizon is represented by change requests — you may remember: the 2 additional
features proposed by the product manager and the 4 features urgently needed by customer implementation pro-
jects — and some other requests which have been postponed ... Typically, the mid-term planning horizon is about
few weeks to months.

« Ad-hoc: the urgent fire fighting and trouble shooting actions which arise during development. In our imaginary
project, the ad-hoc planning horizon is represented by the urgent request for a patch for Rel.3.0 (in March) and
other tasks we have not mentioned in Chapter 2. Typically, the ad-hoc planning horizon is about a few days to
several weeks.

At the beginning of our imaginary project only the mid-term planning horizon has been taken into account — so any
request disarranged the plan.

It seems to be avisable to plan the resources for three planning horizons: for mid-term and short-term requested fea-
tures and for ad-hoc requested fire fighting and trouble shooting actions.

However, we only know the mid-term requests. They are typically specified when we set up the plan, and we know
that there will be some short-term requests and some ad-hoc action. The rest of these requests is unknown: We do not
know their number, the time when they will be made, their kind and the effort to be made to allocate resources.

Extreme programming [3,4] and SCRUM [5] try to solve that problem by short-term iterations (about a month).
The intention is to plan in detail for the next iteration (the next 4 weeks) and to freeze the set of features for this itera-
tion. For the next iteration all the requests accumulated in the last period may be included in the new list of features
which may have new priorities.

Short iterations cannot prevent us from the necessity to look into the mid-term future (6 - 12 months ahead) to get
an answer to the question how many items on our feature list we can we tick off by September.

With some practical experience (and some data from the past) we can find a reasonable answer when we split our
resources in the following way, e.g.:

* 50% for mid-term features
» 35% for short-term requests

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstrale 17/20 7/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem

Berlin 29.09.2006

* 15% for ad-hoc actions

Note: If we assume that for ad-hoc trouble shooting the estimated 15% will be needed in any casethe 35% reserved for
short-term requests must also compensate our possible estimation errors at the mid-term features.

If we surprisingly do not spend resources booked for short-term and ad-hoc requests as planned,
we can gradually deblock these resources for implementing the next features from the feature list.
This strategy leads to the “50% rule” and the “1/3 ™ rule”

Note: These rules are intended as a way out in a situation as described in our imaginary project. They are definitely not
meant as ultimate solutionbut work quite well to improve planning reliability rapidly. Hence they can be a starting
point for finding an own agile planning strategy.

5.2 Prioritizing rules - The 50% rule

The 50% rule is intended for following situations:
The effort estimates are not reliable (typically over-optimistic), and we expect some ad-hoc request and few short-
term requests, or the effort estimates are not so bad, and we expect a couple of short-term or ad-hoc request.

The 50% rule works as follows:
* 50% of the resources shall be allocated to priority-1-featues (must-have features)
* 50% of the rest (25% overall) may be allocated to priority-2-featues (should-have features).
* The rest (25% overall) is booked for, estimation errors, other problems and requests.

The best case result will typically be:
All priority-1 and priority-2 features will be implemented in time and budget (if the interferences caused by re-
quests and estimation errors and problems add up to less than 1/3 of the planned effort for prio-1 and prio-2 features)

The worst case result will typically be:
At least the priority-1 features will be implemented in time and budget (if the interferences caused by requests and
estimation errors and problems add up to less than 100% of the planned effort for prio-1 features).

The effect:

Even in the worst case scenario we need not worry about the prio-1 features! They will be available on schedule! In
most cases, you will get all prio-1 features and some of the prio-2 features. As a reasonable compensation for the prio-2
features which have not been implemented the most urgent requests and troubles could be dealt with.

5.3 Prioritizing rules - The 1/3 @ rule

The 1/3“ rule is intended for following situations:
The effort estimates are not reliable (typically over-optimistic), and we expect a couple of short-term and ad-hoc
requests, or the effort estimates are not so bad, and we expect many short-term or ad-hoc requests.

The 1/3" rule works as follows:
« 1/3" of the resources shall be allocated to priority-1-features (must-have features)
« 1/3" of the resources may be allocated to priority-2-features (should-have features).
« The rest (1/3" overall) is provided for estimation errors and other problems and requests.

The best case result will typically be:
All priority-1 and priority-2 features will be implemented in time and budget. (If the interferences caused by re-
quests, estimation errors and problems accumulate to less than 50% of the planned effort for prio-1 and prio-2 features)

The worst case result will typically be:
At least the priority-1 features will be implemented in time and budget. (If the interferences caused by requests and
estimation errors and problems accumulate to less than 200% of the planned effort for prio-1 features).

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstralke 17/20 8/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem

Berlin 29.09.2006

The effect:

Even in the worst case scenario we need not worry about the prio-1 features!
They will be available on schedule. In most cases you will get all prio-1 features and some of the prio-2 features. As
reasonable compensation for the prio-2 features which have not been implemented, the most urgent requests and trou-
bles could be dealt with.

Both rules are based on the consideration that you cannot ad-hoc improve estimation accuracy and the way an organi-
zation handles their requirements or requests. But you can ad-hoc change your strategyon your promises for the next
planning period — if you really want to.

5.4 Project controlling techniques
Some controlling techniques which will help to get the process under control:

« Measuring the requirements volatility (breakage factor — see Chapter 6.1) helps us to estimate the percent-age of
work caused by short-term and ad-hoc requests

A feature completed trend line helps us to measure the progress of work (the project velocity)

« The earned value analysis [1] helps us to focus on completing work packages or features instead of starting new
work and leave already started work packages open, because the value will not be earned until the work package
has not been finished completely! It may also help to identify a systematic estimation error (overoptimistic esti-
mates) when your data are not detailed enough to make a target/actual effort comparison for single work pack-
ages.

6. ADOPTED CONCEPTS AND TECHNIQUES

6.1 The breakage-factor from CoCoMo II

CoCoMo Il (Constructive Cost Modelling) [6] is a cost estimation model developed by Barry Boehm and his team at
the USC-CSE (University of Southern California - Center of Software Engineering).

Breakage reflects the requirements volatility in a project. The breakage-factor represents the percentage of features
which will be changed, added or deleted during the project. In simple terms, it is the percentage of work we have to do
more than is represented by the work breakdown structure based on a specification or feature list.

Breakage is the part of work we cannot estimate based on our specification or feature list, because it is not known at
this time.

6.2 The planning game from XP or SCRUM

The planning game as described in XP (eXtreme Programming [3,4]) or SCRUM [5] helps us to prioritize features and
select as set of features for the next iteration, and it is based on the following principle: “The customer is responsible
for business decisions, the supplier is responsible for technical decisions”.

6.3 The SCRUM sprint

The SCRUM sprint is a technique to balance flexibility and productivity. The development is divided into short itera-
tions (30 days - called sprint). The sprint planning meeting defines the sprint backlog (= set of features to implement in
this sprint).

During the sprint, the sprint backlog is executed —and no external changes are allowed.

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstrale 17/20 9/11
Tel: +43 (1) 71527 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem

Berlin 29.09.2006

This helps the team to work at top speed without interruptions due to new requests or changes.
The scrum sprint is a technique focused to minimize non-productive times (down-times, set-up
times, re-tool-times).

6.4 Conclusions and Recommendations

If the characteristics of your software development “project” look like a “production problem”, you can benefit from
treating it as a production planning problem:

» Rephrase the planning problem to treat the resources as primary planning variable.
« Treat the resulting output as dependent planning variable —a factor which has to be planned and managed during
the project instead of being defined at the beginning.

You will see - you will get a different planning and management problem:

 Plan and manage the features which shall be realised as the variable factor.

« Identify the “must-have-features” and check whether you can provide them according to your needs; if not, you
should better not try to carry out the project — it might be an impossible task.

« Help the stakeholders to define a feature list and to prioritize the features.

« Increase the planning reliability by splitting the resources for mid-term, short-term and ad-hoc requests. If you do
not have any experience values from the past, the 50% rule and the 1/3"-rule can help you to start making plans
which are robust enough to withstand estimation errors and additional requests.

« Strictly prioritized features will make you flexible and will help you to maximise your earned value. As long as
you have not started with the detailed specification and the implementation you can still change priorities with
minimal losses. Otherwise, if you have started with the detailed specification and the implementation you should
complete it with high priority. If you cancel or postpone the work on already started work packages, your losses
(stranded investments) will typically exceed your savings.

« Strictly prioritized features and robust plans will help you to increase productivity due to a reduced effort for re-
planning and motivated staff.

Based on my experiences with some clients which maintain and enhance existing IT solutions or develop IT products, |
would like to point out that this is not only work for difficult project settings — it is a solution, if the prioritizing of
features and the splitting of resources can be turned into practice! It can help to reduce planning complexity dramati-
cally and to increase planning success in situations where planning reliability is unknown. If you want to apply an agile
process, this paper can help you to understand the purpose of some of its rules.

References
[1] PMBOK® guide 2000 Ed.: A guide to Project Management Body Of Knowledge
PMI Project Management Institute Inc. © 2000
Note: The actual edition is the PMBOK® guide 2004 Ed.
[2] MaryPoppendieck: Lean Programming Part 1 and Part 2;
SD Magazine, May & June 2001; www.sdmagazine.com
[3] Kent Beck: Extreme Programming Explained
Addison Wesley © 2000, ISBN: 0-201-61641-6
[4] Kent Beck, Martin Fowler: Planning Extreme Programming
Addison Wesley © 2001, ISBN: 0-201-71091-9
[5] Ken Schwaber: Agile Project Management with SCRUM
Microsoft Press © 2004
[6] Barry W. Boehm et al.: Software Cost Estimation with Cocomo 11
2000; Prentice-Hall; ISBN 0-13-026692-2
see also - http://sunset.usc.edu/research/cocomosuite/suite_main.html
[7] The Agile Alliance (Kent Beck et al.): Manifesto for Agile Software Development; 2001 - http://www.agilemanifesto.org

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstrale 17/20 10/11 —
Tel: +43 (1) 715 27 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

ConQuest 2006: Planning Software Development Taken as a manufacturing control problem

Berlin 29.09.2006

Authors' biography - DI. Andreas Nehfort:

e Consultant for IT & Software Process Improvement (SPI); Nehfort IT-Consulting = www.nehfort.at Focus:
Software Process Models and Software Process Improvement — Agile Processes, Assessment Based Process Im-
provement - CMMI / SPIiCE, Project Management & IT Quality Management.

« Intacs Certified 1SO 15504 Assessor = SPICE: Software Process Improvement and Capability dEtermination

« since 1988 Trainer for IT Project Management, Software Engineering & SW Quality Assurance

* since1986 self-employed = Nehfort IT-Consulting = www.nehfort.at.

« since 1982 Project Manager, Requirements Analyst & Consultant for Software Engineering & Software Proc-
esses

« 1978: start of my professional career as Software-Developer;

« 1975 —1979: Study of Technical Mathematics at the Technical University of Vienna — certificate Dipl.Ing. (DI.)

Nehfort IT-Consulting KEG

A - 1030 Wien Untere WeiRgerberstrale 17/20 11/11 —
Tel: +43 (1) 715 27 65 Fax: +43 (1) 71050 73 email: andreas@nehfort.at http://www.nehfort.at
© DI. Andreas Nehfort ConQuest2006-Paper-Planning-SW-Dev.doc / 09.10.2006 1:10 Berlin 29.09.2006

